
“I may not have gone where I intended to go, but I think I have ended
up where I needed to be.” –Douglas Adams

“All you need is the plan, the road map, and the courage to press on
to your destination.” –Earl Nightingale

“If I cease searching, then, woe is me, I am lost. That is how I look at it
- keep going, keep going come what may.” – Vincent van Gogh

Disclaimer: I use these notes as a guide rather than a
comprehensive coverage of the topic. They are neither a
substitute for attending the lectures nor for reading the
assigned material.

1

Announcements

• HW2 (path network) due Sunday night, September 8 @ 11:55pm
• HW2 is more challenging than HW1. Start early!

– You must write the code to generate the path network, as a set of edges
between path nodes. An edge between path nodes exists when (a) there is
no obstacle between the two path nodes, and (b) there is sufficient space
on either side of the edge so that an agent can follow the line without
colliding with any obstacles.

– We will test path network using a random-walk navigator that moves the
agent to the nearest path node and then follows a randomly generated
path---sequence of adjacent path nodes.

2

Verification of Participation (Deadline: Mon. Sept. 9, 2019 at
16:00): Verification of Participation is a process whereby
instructional faculty report to the Registrar’s Office and the
Office of Scholarships & Financial Aid whether they have
students enrolled in their classes who are not engaged with the
course. This verification by faculty is a Federal Title IV
requirement (visit https://registrar.gatech.edu/faculty-and-
staff/verification-of-participation for more information about the
requirement and what constitutes participation).

3

https://registrar.gatech.edu/faculty-and-staff/verification-of-participation)

PREVIOUSLY ON…

6

Graphs: Killer App in GAI

• Navigation / Pathfinding
• Navgraph: abstraction of all locations and their connections
• Cost / weight can represent terrain features (water, mud, hill),

stealth (sound to traverse), etc
• What to do when …

– Map features move
– Map is continuous, or 100K+ nodes?
– 3D spaces?

7

Modelling and Navigating the Game World

8

9

10

11

12

13

N-2: Grids, Path Networks

1. What’s the intuition behind iterative deepening?
2. What are some pros/cons of grid navigation?
3. What are some benefits of path networks?
4. Cons of path networks?
5. What is the flood fill algorithm?
6. What is a simple approach to using path navigation nodes?
7. What is a navigation table?
8. How does the expanded geometry model work? Does it work with

map gen features?
9. What are pros and cons of expanded geometry?

14

N-1: Nav Mesh

1. What are the major wins of a
Nav Mesh?

2. How do we ensure convexity?
3. Would you calculate an optimal

nav-mesh?
4. Do we still need waypoints? If

so, where to place them?

15

Path finding models

1. Tile-based graph – “grid navigation”
• Simplest topography
• assume static obstacles
• imaginary latice of cells superimposed over an environment such that an

agent can be in one cell at a time.
• Moving in a grid is relatively straightforward: from any cell, an agent can

traverse to any of its four (or eight) neighboring cells
2. Path Networks / Points of Visibility NavGraph
3. Expanded Geometry
4. NavMesh

16

Path finding models

1. Tile-based graph – “grid navigation”
2. Path Networks / Points of Visibility NavGraph

• 2 tier nav: Continuous, non-grid movement in local area
• does not require the agent to be at one of the path nodes at all times. The

agent can be at any point in the terrain.
• When the agent needs to move to a different location and an obstacle is

in the way, the agent can move to the nearest path node accessible by
straight-line movement and then find a path through the edges of the
path network to another path node near to the desired destination.

3. Expanded Geometry
4. NavMesh

17

Path finding models

1. Tile-based graph – “grid navigation”
2. Path Networks / Points of Visibility NavGraph
3. Expanded Geometry

• Discretization of space can be smaller
• 2 tier nav: Continuous, non-grid movement in local area
• Can work with auto map generation
• Can plan nicely with “steering behaviors”

4. NavMesh

18

Path finding models

1. Tile-based graph – “grid navigation”
2. Path Networks / Points of Visibility NavGraph
3. Expanded Geometry
4. NavMesh

• Win: compact rep, fast search, auto create
• Each node (list of edges) is a convex polygon
• Convex = Any point w/in polygon is unobstructed from any other
• Can be generated from the polygons used to define a map

19

Generating the Mesh:
Greedy/Simple Approach

For point a in world points:
For point b in world points:

For point c in world points:
if (it is a valid triangle) and !exists:

add triangle to mesh

Iterate through triangles to merge to quads
Iterate through...

20

On Convexity

• by definition: convex polygons have all internal angles of less
than 180 degrees
– all diagonals are contained within the polygon
– a line drawn through a convex polygon in any direction will intersect

at exactly two points
• utils.py has isConvex(points): returns true if all the angles

made up by a list of points are convex. Points is a list (point1,
point2, ..., pointN) and a point is a tuple (x, y). The list must
contain at least three points.

21

Grid as Graph

22

Path Network as Graph

23

Nav Mesh as Graph
(well actually path network again)

24

Why talk about these as graphs?

• Standard, abstract way to discuss different spatial
representations

• Allows for quantifiable comparison between different spatial
representations (e.g. number of edges/nodes)

• Allows us to discuss different search approaches without
worrying about the exact spatial representation

25

Path finding problem solved, right?
• Compilation

– http://www.youtube.com/watch?v=lw9G-
8gL5o0

• Sim City (1, 2 … 5)
– https://www.youtube.com/watch?v=zHdyz

x_ecbQ
• Half-Life 2

– http://www.youtube.com/watch?v=WzYEZ
VI46Uw

• Fable III
• DOTA (Defense of the ancients) 1+2

– https://www.youtube.com/watch?v=p585
DHI0qh4

• WoW (World of Warcraft)

• Minecraft Bedrock Edition
– https://www.youtube.com/watch?v=qR5M

5v0XDM0
• Fallout 4

– https://www.youtube.com/watch?v=M7Ti
cvLXrQo

• DARPA robotics challenge:
– https://www.youtube.com/watch?v=g0TaY

hjpOfo

https://www.youtube.com/watch?v=zHdyzx_ecbQ
https://www.youtube.com/watch?v=p585DHI0qh4
https://www.youtube.com/watch?v=qR5M5v0XDM0
https://www.youtube.com/watch?v=M7TicvLXrQo
https://www.youtube.com/watch?v=g0TaYhjpOfo

GRAPH SEARCH – PATH PLANNING

Excellent slides now available here: https://cs.stanford.edu/people/abisee/gs.pdf
Supporting interactive animations: https://cs.stanford.edu/people/abisee/tutorial
We can also thank Stanford for A*

27

https://cs.stanford.edu/people/abisee/gs.pdf
https://cs.stanford.edu/people/abisee/tutorial

Path Planning Algorithms

• Must Search the state space to move NPC to goal state
• Computational Issues:

– Completeness
• Will it find an answer if one exists?

– Time complexity
– Space complexity
– Optimality

• Will it find the best solution

29

Search Strategies

• Blind search
– No domain knowledge.
– Only goal state is known

• Heuristic search
– Domain knowledge represented by heuristic rules
– Heuristics drive low-level decisions
– Video games provide domain knowledge that can be leveraged!

Graph Search: Sorting Successors

• Uninformed / Blind (no domain knowledge; all nodes are same)
– DFS (stack – lifo), BFS (queue – fifo)
– Iterative-deepening DFS (Depth-limited)

• Informed / Heuristic (pick order of node expansion w/ heuristic)
– Greedy Best First
– Dijkstra – guarantee shortest path (Elog2N)
– Floyd-Warshall
– A* (IDA*)…. Dijkstra + heuristic
– D*

• Hierarchical can help (run speed)

http://en.wikipedia.org/wiki/A*_search_algorithm
30

Path Planner

• Initial state (cell), Goal state (cell)
• Each cell is a state agent can occupy
• Sort successors, try one at a time (backtrack)
• Heuristic: Manhattan or straight-line distance
• Each successor stores who generated it

31

What problem are all of these approaches solving?
or

What differentiates these approaches?

Pathfinding List (Open and Closed Sets)

• Critical Operations:
• Adding an entry to the list
• Removing an entry from the list
• Finding the smallest element
• Finding an entry in the list corresponding to a particular node (find() or

contains())

• Must find a balance between these four operations for best
performance

Pathfinding List

• Naïve: Simple linked list (finding may visit all elements)
• Priority Queue: Sorted List. Finding is efficient but cost to add

increases
• Priority Heap: array-based tree structure. Smallest element head of

tree. Remove smallest element and adding new element take O(log n)
• Bucketed Priority Queue: Sorted buckets of unsorted lists. Can be

tuned for application

Uninformed

36

Breadth-First Search

• Expand Root node
• Expand all Root node’s children

• Expand all Root node’s grandchildren

• Problem: Memory size

Root Root

Child1 Child2

Root

Child1 Child2

GChild1 GChild2 GChild3 GChild4

37

Depth First Search

• Always expand the node that is deepest in the tree
• Not best solution (if you stop at first found)

Root

Child1

GChild1 GChild2

Root

Child1 Root

Child1

GChild1

Iterative Deepening

• mid 1970s
• Idea: perform depth-limited DFS repeatedly, with an increasing depth

limit, until a solution is found.
• Each repetition of depth-limited DFS needlessly duplicates all prior

work?
• Duplication is not significant because a branching factor b > 1 implies that the

number of nodes at depth k exactly is much greater than the total number of
nodes at all depths k-1 and less.

• That is: most nodes are in the bottom level.
• The space required by DFS is O(tree depth); BFS is O(#tree nodes ~=

branchingdepth); IDDFS O(depth * branching factor)

Number of nodes

• Full, complete, balanced binary tree, height h
• Total number of nodes N = 2^{h+1} – 1

• Leaf nodes at height 0: 2^0 = 1
• Leaf nodes at height 1: 2^1 = 2
• Leaf nodes at height 2: 2^2 = 4
• Leaf nodes at height 3: 2^3 = 8
• N = 1 + 2 + 2^2 + 2^3 + … + 2^h

= (2^{h+1} – 1) / (2 – 1) = 2^{h+1} - 1
• Number of leaves L = 2^h
• Height 42, N = 8,796,093,022,207

L = 4,398,046,511,104

Informed

Heuristics

• [dictionary]“A rule of thumb, simplification, or educated guess
that reduces or limits the search for solutions in domains that
are difficult and poorly understood.”

• h(n) = estimated cost of cheapest path from n to goal (with
goal == 0)

41

Heuristic Search

• Find shortest path from a single source to a single destination
• Heuristic function:

– We have some knowledge about how far away any given state from
the goal, in terms of operation cost

– For navigation: Euclidean distance, Manhattan distance

42

CS 4455 43

Greedy Search

• Expand the node that yields the minimum cost
• Expand the node that is closest to target
• Depth first
• Minimize the function h(n) the heuristic cost function

• Not Complete!
• “Greedy” implies that working solution is not revised

• Note, A* is best-first, but not greedy (incorporates distance from start)
• Local Minima/Maxima (dead end)

• https://cs.stanford.edu/people/abisee/tutorial

https://cs.stanford.edu/people/abisee/tutorial

Greedy Algorithm Review

Find a path from start to
goal node

1. Add the neighbors of
the current node to
some open set list

– We can get here!
2. Pick next current

node from open set
3. If next node is goal,

backtrack to start for
path

A

D

G

B

H

C

I

44

Question

What heuristic could be used to get from B to L in
both graphs the fastest?
• Fastest meaning with fewest current nodes chosen

A

E

I

B

F

J

C

K

D

H

L

A

E

I

B

F

J

C D

H

L

45

Greedy as a tree

A

E

I

B

F

J

C

K

D

H

L

A

B

F C t=1

t=0

BE DJ t=2

A F CI K H

46

Improvement over Greedy

• Beyond improving
the heuristic, how
can we improve the
greedy pathing
algorithm?

• When does it fail?

47

A*

• Won’t just have an open set, but also a closed set (nodes
already evaluated)

• Open set will be a priority queue, so if we discover a better
node we can immediately pick it

• Priority Queue: A queue that automatically sorts itself so
minimum cost is at the top

48

A* Search

• 1968: Single source, single target graph search
• Guaranteed to return the optimal path if the heuristic is

admissible
• Evaluate each state: f(n) = g(n) + h(n)
• Open list: nodes that are known and waiting to be visited
• Closed list: nodes that have been visited

49

Heuristic Function for A*

• Computational performance is important
• Underestimate completely (0 heuristic) is Dijkstra!
• Perfect Heuristic: A* would go straight to correct node O(p)

(but such a heuristic solves for exactly what we are looking for
in the first place!)

• Overestimate: May not return the best path

A* Search

• A* is optimal…
• …but only if you use an admissible heuristic
• An admissible heuristic is mathematically guaranteed to

underestimate the cost of reaching a goal
• What is an admissible heuristic for path finding on a path

network?

51

Admissible Heuristic

• An admissible heuristic is one that guarantees that the shortest
path can be found with the search because it never overestimates
the cost of reaching the goal
– A heuristic that does not overestimate is admissible
– Otherwise we say a heuristic is inadmissible

• Euclidean Distance is admissible
• In games: perfectly acceptable to use either admissible or

inadmissible
– “Overestimates can make A* faster if they are almost perfect but home

in on the goal more quickly” – M&F

A*

• Nodes will have two
costs:
– G score: Cost from

getting from start to
here

– H score: Estimated cost
of getting from here to
goal

– F score: G+H
• We will pick which

node to choose next
based on both of
these scores

54

A*
add start to openSet
while openSet is not empty:

current = openSet.pop()
if current == goal:

return reconstruct_path(current)
closedSet.Add(current)
for each neighbor of current:

if neighbor in closedSet:
continue

gScore = current.gScore + dist(current, neighbor)
if neighbor not in openSet:

openSet.add(neighbor)
else if gScore< openSet.get(neighbor).gScore

openSet.replace(openSet.get(neighbor), neighbor)

55

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Heuristic Distance, AB

57

Evaluation function f(n) = g(n) + h(n)

Open: A(366)
Closed:

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

58

Open: S(253+140=393), T(329+118=447), Z(374+75=449)
Closed: A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

59

Open: R(220+193=413), F(239+176=415), T(329+118=447), Z(374+75=449), O(291+380=671)
Closed: S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

60

Open: F(239+176=415), P(317+100=417), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

61

Open: P(317+100=417), T(329+118=447), Z(374+75=449), B(450+0=450), C(366+160=526), O(291+380=671)
Closed: F(415), R(413), S(393), A(366)

Backtrack!

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

62

Open: B(418+0=418), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: P(417), F(415), R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

63

Open: T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: B(418), P(417), F(415), R(413), S(393), A(366)

Solution: A-S-R-P-B

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

64

Non-admissible heuristics

• Discourage agent from being in particular states
• Encourage agent from being in particular states

67

A*A*

Dijkstra’s Algorithm

Dijkstra’s algorithm

• 1956: A single-source, multi-target shortest path algorithm
• Tells you path from any one node to all other nodes
• Time complexity for single vertex: O(E log V)

– Run for each vertex: O(VE Log V) which can go (V3 Log V) in worst
case

• “This is asymptotically the fastest known single-source
shortest-path algorithm for arbitrary directed graphs with
unbounded non-negative weights.” (source: Wikipedia)

• Like BFS for weighted graphs; if all costs equal, Dijkstra = BFS

72

Given: G=(V,E), source

For each vertex v in G: set dist[v] to infinity, set parent[v] to null
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty:

Let u = get vertex in Q with smallest distance value
Remove u from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

Return dist[], parent[]

Source: wikipedia 73

Path reconstruction

Given: parent[], target

Set path = empty stack
Set curnode = target
while parent[curnode] is defined:

path.push(curnode)
curnode = parent[curnode]

path.push(curnode)

74

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

inf

inf

inf

0

* Source = 1

For each vertex v in G, set dist[v] to infinity
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty…

Let u = get vertex in Q with smallest distance value (node 1) dist[v]

Dest Cost Parent

1 0

2 Inf

3 Inf

4 Inf

5 Inf

6 Inf

Q=[1,2,3,4,5,6]
U=1

75

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

inf

inf

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 Inf

4 Inf

5 Inf

6 Inf

Q=[1,2,3,4,5,6]
U=1
V=2

76

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

inf

9

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 Inf

5 Inf

6 Inf

Q=[1,2,3,4,5,6]
U=1
V=3

77

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 Inf

5 Inf

6 14 1

Q=[1,2,3,4,5,6]
U=1
V=6

78

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 2)

Dest Cost Parent

1 0

2 7 1

3 9 1

4 Inf

5 Inf

6 14 1

Q=[2,3,4,5,6]
U=2

V=

79

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Remove u (node 2) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 Inf

5 Inf

6 14 1

Q=[2,3,4,5,6]
U=2
V=3

80

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

22

7

14

9

0

* Source = 1

Remove u (node 2) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 22 2

5 Inf

6 14 1

Q=[2,3,4,5,6]
U=2
V=4

81

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

22

7

14

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 3)

Dest Cost Parent

1 0

2 7 1

3 9 1

4 22 2

5 Inf

6 14 1

Q=[3,4,5,6]
U=3

V=

82

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

20

7

14

9

0

* Source = 1

Remove u (node 3) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 Inf

6 14 1

Q=[3,4,5,6]
U=3
V=4

83

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

20

7

11

9

0

* Source = 1

Remove u (node 3) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 Inf

6 11 3

Q=[3,4,5,6]
U=3
V=6

84

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

20

7

11

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 6)

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 Inf

6 11 3

Q=[4,5,6]
U=6

V=

85

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Remove u (node 6) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[4,5,6]
U=6
V=5

86

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 4)

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[4,5]
U=4

V=

87

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Remove u (node 4) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[4,5]
U=4

V=

88

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 5)

Dest Cost Parent

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[5]
U=5

V=

89

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

* We now know the shortest distance and shortest path to all nodes from node 1.

Dest Cost Parent

1 0 1

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[]
U=5

V=

90

Reconstructing the path from lookup table

Want to go from node 1 to v (e.g. v=5)

if parent[v] is empty then return null path
path = (v)
while v != 1 do:

v = parent[v]
path.prepend(v)

return path

Dest Cost Parent

1 0 1

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

91

All pairs shortest path (APSP)

• We talked about this briefly as a “navigation table”

• A look-up table of the form table[node1,node2]-> node 3
– Where node3 is the next node to go to if you want to go from node1 to

node2

• Intuition: Find the shortest distance/path between all pairs of
nodes
– Use this to construct the look-up table

92

	Slide Number 1
	Announcements
	Slide Number 3
	Previously on…
	Graphs: Killer App in GAI
	Modelling and Navigating the Game World
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	N-2: Grids, Path Networks
	N-1: Nav Mesh
	Path finding models
	Path finding models
	Path finding models
	Path finding models
	Generating the Mesh: �Greedy/Simple Approach
	On Convexity
	Grid as Graph
	Path Network as Graph
	Nav Mesh as Graph�(well actually path network again)
	Why talk about these as graphs?
	Path finding problem solved, right?
	Graph Search – Path Planning
	Path Planning Algorithms
	Search Strategies
	Graph Search: Sorting Successors
	Path Planner
	Slide Number 32
	Pathfinding List (Open and Closed Sets)
	Pathfinding List
	Uninformed
	Breadth-First Search
	Depth First Search
	Iterative Deepening
	Number of nodes
	Informed
	Heuristics
	Heuristic Search
	Greedy Search
	Greedy Algorithm Review
	Question
	Greedy as a tree
	Improvement over Greedy
	A*
	A* Search
	Heuristic Function for A*
	A* Search
	Admissible Heuristic
	A*
	A*
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Non-admissible heuristics
	A*
	Dijkstra’s Algorithm
	Dijkstra’s algorithm
	Slide Number 73
	Path reconstruction
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Reconstructing the path from lookup table
	All pairs shortest path (APSP)

